
Designing for

Reuse:Creating APIs for the

Future

Mike Amundsen,

Layer 7 / CA

@mamund

Introduction

The Challenge

Versioning

Content removed by author’s request

Content removed by author’s request

Deprecate version after a year

Content removed by author’s request

Content removed by author’s request

They release a new version every

120 days

Currently supporting 20+

parallel versions

Content removed by author’s request

Content removed by author’s request

No breaking changes

Content removed by author’s request

To Version

means

"to turn"

There's another word for backward-

compatible versioning...

Backward-compatible versioning is

essentially creating

extensions

So, how do you enable backward-

compatible

API extensions?

I'll talk about two ways

today...

Messages (on the wire)...

Implementation (in the code)

Message Design

Extending Messages

Extending Messages

Extending messages let's you easily

add backward-compatible changes

Structure vs Data

Structure vs Data

Focus on passing data,

not structure

There are several new formats

designed specifically for passing data

on the Web

What's the common theme

in these new designs?

Message over Object

"[I]t is far easier to

standardize

representation and

relation types than it is to

standardize objects and

object-specific

interfaces."

- Roy T. Fielding

The most common data-passing format

on the Web is…

The most common data-passing format

on the Web is…

Because it is easy to extend.

Message design is not the only

place to plan for extensions

Implementation Design

Component != Connector

Component

▪ Database

▪ File System

▪ Message Queue

▪ Transaction Manager

▪ Source Code

Component == IP

Component == $$$

Component == Private

Connector

▪ Web Server

▪ Browser Agent

▪ Proxy Server

▪ Shared Cache

Connector == Shared Tech

Connector == Commodity

Connector == Public

Keep Connectors and

Components separated

Implementation Stack

Implementation Stack

Implementation Stack

Implementation Stack

Class Schedule Server

Each of these implmentation

elements can be updated

independently w/o breakage

Client Strategies

Most client apps are bound to URIs

and the CRUD pattern

URI-Style Clients (CRUD)

● HTML SPA Container

URI-Style Clients (CRUD)

● URIs, Objects, and Actions

URI-Style Clients (CRUD)

● URIs, Objects, and Actions

URI-Style Clients (CRUD)

● URIs, Objects, and Actions

URI-Style Clients (CRUD)

● Composed HTML

URI-Style Clients (CRUD)

● JS Summary

A better approach is to

bind to the message.

Hypermedia Client (REST)

● HTML FSM Container

Hypermedia Client (REST)

● Media Types and Controls

Hypermedia Client (REST)

● Media Types and Controls

Hypermedia Client (REST)

● Composed HTML

Hypermedia Client (REST)

● Summary JS

Message over Object

The Lessons of HTTP

You never get it right the

first time...

So, lots of changes to the

protocol over the last 15

years and...

It's all backward compatible!

"If you want a

protocol to last a

few decades,

don't assume

too much."

- Roy Fielding

So the real lesson in all

this?

So...

● Use the extension pattern

● Keep structure in messages low

● Consider new message-based media types
● form-urlencoded is still a winner

● Commit to no "breaking changes"

Message Design...

● Keep component and connectors apart

● Use representors

● Make sure storage, biz, representors, and

routers can change w/o breakage

Server Implementation...

● Bind to messages, not objects/actions

● Code defensively, don't assume

● Make sure requestor can convert messages

into internal objects as needed

Client Implementation...

● You won't get it right the first time

● Build support for extensions into your work

● If you need to change it once, you might

need to change it often.

The lessons from HTTP

Designing for

Reuse:Creating APIs for the

Future

Mike Amundsen,

Layer 7 / CA

@mamund

http://g.mamund.com/oscon2014-reuse

