
Beyond Source Code

Mike Amundsen,

API Academy / CA

@mamund



Introduction







Beyond Source Code

• Computing

• Communicating

• Scaling

• Artisinal Luddites

• The Future of Code



Computing







“Figure out how the machine works and then 

figure out how to program it.”

- Kay McNulty, ENIAC Team





Jennings, Wescoff, & Lichterman, 1946



There was no source code…



There was no source code…

The program was the machine.















Now there is source code…

The machine is the code.



Communicating





Melvin Conway





Project-Based Organizations



“Project-based organizations 

revolve around the concept 

that a group of individuals or 

firms join together with the 

explicit purpose of producing a 

tangible set of outputs”

-- Paul Chinowsky, EPOJ 2011 



“How Do Committees Invent?”









“

Any organization that designs a 

system (defined more broadly here 

than just information systems) will 

inevitably produce a design whose 

structure is a copy of the 

organization's communication 

structure.”

-- Mel Conway, 1967



A system’s design is a copy of 

the organization’s 

communication structure.

-- Mel Conway, 1967



Communication dictates design.

-- Mel Conway, 1967



Conway’s Law





Brooks’ Law

“Adding manpower to a late 

software project makes it later.”

-- Fred Brooks, 1975



Intercommunication formula

n(n − 1) / 2

-- Fred Brooks, 1975



Intercommunication formula

5*(5–1)/2 = 10 

15*(15–1)/2 = 105

50*(50–1)/2 = 1,225

150*(150–1)/2 = 11,175

-- Fred Brooks, 1975



Dunbar’s Number

A measurement of the “cognitive 

limit to the number of individuals 

with whom any one person can 

maintain stable relationships.”

-- Robin Dunbar, 1992







Dunbar Groups

Intimate friends: 5

Trusted friends: 15

Close friends: 35

Casual friends: 150

-- Robin Dunbar, 1992



Intercommunication formula

5*(5–1)/2 = 10 

15*(15–1)/2 = 105

50*(50–1)/2 = 1,225

150*(150–1)/2 = 11,175

-- Fred Brooks, 1975



Communication dictates design.

-- Mel Conway, 1967



Conway’s (first) Law



So… what about other Conway Laws?



Conway’s Second Law



Doing it Over

“There is never enough time 

to do something right, 

but there is always enough 

time to do it over.”

-- Mel Conway, 1967



Trade Offs



Efficiency-Effectiveness Trade Offs (ETTOs)





Conway’s Third Law



Homomorphism

“There is a homomorphism 

from the linear graph of a 

system to the linear graph of 

its design organization”

-- Mel Conway, 1967







Homomorphism

“If you have four groups 

working on a compiler, you'll 

get a 4-pass compiler.”

- Eric S. Raymond, 1991



Conway’s Fourth Law



Disintegration

“The structures of large 

systems tend to disintegrate 

during development, 

qualitatively more so than with 

small systems.”

-- Mel Conway, 1967



Three reasons Disintegration occurs…



Disintegration: Reason #1

“The realization that the 

system will be large, together 

with organization pressures, 

make irresistible the 

temptation to assign too many 

people to a design effort”

-- Mel Conway, 1967



Brooks’ Law

Adding manpower to a late 

software project makes it later.

-- Fred Brooks, 1975



Disintegration: Reason #2

“Application of the 

conventional wisdom of 

management to a large 

design organization causes its 

communication structure to 

disintegrate.”

-- Mel Conway, 1967



Dunbar’s Number

A measurement of the “cognitive 

limit to the number of individuals 

with whom any one person can 

maintain stable relationships.”

-- Robin Dunbar, 1992



Disintegration: Reason #3

“Homomorphism insures that 

the structure of the system will 

reflect the disintegration which 

has occurred in the design 

organization.”

-- Mel Conway, 1967



Communication dictates design.

-- Mel Conway, 1967



The machine is the organization.



Scaling



“Free” as in “Scale-Free”



“A scale-free network is a network whose 

degree distribution follows a power law."



“A scale-free network is a network whose 

degree distribution follows a power law."























This applies to code, too…





Code as hierarchy





The more code, the more bugs.



“The industry average is about 15 - 50 errors 

per 1000 lines of delivered code.“

- Steve McConnell





Code is not the solution, code is the problem.

























NO CODE



NO CODE



Artisinal Luddites





Ned Ludd, 1811

The Luddites were 19th-century English textile 

workers who protested against newly 

developed labor-economizing technologies

- Wikipedia



Ned Ludd, 1811

The Luddites were 19th-century English textile 

workers who protested against newly 

developed labor-economizing technologies

- Wikipedia









Slow Programming

The slow programming movement is 

a software development philosophy that 

emphasizes careful design, quality 

code, software testing and thinking.

- Wikipedia



Slow Programming

The slow programming movement is 

a software development philosophy that 

emphasizes careful design, quality 

code, software testing and thinking.

- Wikipedia





“What works good is better than what looks good, 

because what looks good can change, 

but works good will still work.” 

– Charles Eames



“What works good is better than what looks good, 

because what looks good can change, 

but works good will still work.” 

– Charles Eames



“What works good is better than what looks good, 

because what looks good can change, 

but works good will still work.” 

– Charles Eames













“I think everybody in this country should learn 

how to program a computer because it teaches 

you how to think.”

- Steve Jobs









Life skills are not the same as livelihood.



"People may outlaw driving cars because it's 

too dangerous. You can't have a person driving 

a two-ton death machine.“

- Elon Musk





The Future of Code



The opposite of Artisinal Programming is…









What’s going on 

here?





Yep. DevOps.



Yep. DevOps.

But for code.



The Three Ways: The Principles Underpinning DevOps

By Gene Kim



The Three Ways: The Principles Underpinning DevOps

By Gene Kim



The Three Ways: The Principles Underpinning DevOps

By Gene Kim



The Three Ways: The Principles Underpinning DevOps

By Gene Kim



Four Pillars of OPS



Four Pillars of OPS

• Reduce Cost

• Increase Speed

• Improve Safety/Resiliency

• Provide Visibility/Feedback



Reduce Cost



Reduce Cost - Virtualize Hardware



Increase Speed



Increase Speed – Automate Deployment



Improve Resiliency



Improve Resiliency – Automated Testing



Provide Visibility



Provide Visibility – Ubiquitous Logging



Same Pillars for DEV



Four Pillars of DEV

• Reduce Cost

• Increase Speed

• Improve Safety/Resiliency

• Provide Visibility/Feedback



Reduce Cost



Reduce Cost - Virtualize System



Increase Speed



Increase Speed – Automate Code



Improve Resiliency



Improve Resiliency – Code Analytics



Provide Visibility



Provide Visibility – Runtime Visualization



Summary



Jennings, Wescoff, & Lichterman, 1946



The program was the machine.





The machine was the code.



Communication dictates design.

-- Mel Conway, 1967



Brooks’ Law

“Adding manpower to a late 

software project makes it later.”

-- Fred Brooks, 1975



Dunbar Groups

Intimate friends: 5

Trusted friends: 15

Close friends: 35

Casual friends: 150

-- Robin Dunbar, 1992



The machine was the organization.







The machine is the network.







Four Pillars of DEV
• Reduce Cost 

(Virtualize the System)

• Increase Speed 

(Automate/Eliminate Code)

• Improve Safety/Resiliency 

(Code Analysis)

• Provide Visibility/Feedback 

(Runtime Visualization)



http://designingtheenterprise.com/wp-

content/uploads/2011/11/network.png

Designing the Enterprise, Ken Barnett 2011 (blog)



“We must break away from the sequential. We 

must state definitions and provide for priorities 

and descriptions of data. We must state 

relationships, not procedures.” 

- Grace Hopper, 1962



“Recognizing the need is the primary 

condition for design.”

– Charles Eames



“Those who ignore the mistakes of the 

future are bound to make them.” 

– Dr. Joseph Miller



Beyond Source Code

Mike Amundsen,

API Academy / CA

@mamund


