
Mike Amundsen

@mamund

Conway’s Four Laws

Mel Conway

Mel Conway

• Burroughs assembler (SAVE) 1950s

• UNCOL (universal compiler language) 1958

• First paper on Coroutines 1963

• “How Do Committees Invent?” (1967)

• MUMPS medical computing (1970s)

• Pascal for Mac & Apple II (1980s)

• #HumanizeTheCraft Project (2010s)

http://www.melconway.com/

Mel Conway

• Burroughs assembler (SAVE) 1950s

• UNCOL (universal compiler language) 1958

• First paper on Coroutines 1963

• “How Do Committees Invent?” (1967)

• MUMPS medical computing (1970s)

• Pascal for Mac & Apple II (1980s)

• #HumanizeTheCraft Project (2010s)

http://www.melconway.com/

Communication dictates design.

-- Mel Conway, 1967

Conway’s Law

Brooks’ Law

“Adding manpower to a late

software project makes it later.”

-- Fred Brooks, 1975

Intercommunication formula

n(n − 1) / 2

-- Fred Brooks, 1975

Intercommunication formula

5*(5–1)/2 = 10

15*(15–1)/2 = 105

50*(50–1)/2 = 1,225

150*(150–1)/2 = 11,175

-- Fred Brooks, 1975

Dunbar Groups

Intimate friends: 5

Trusted friends: 15

Close friends: 35

Casual friends: 150

-- Robin Dunbar, 1992

Conway’s (first) Law

tells us TEAM SIZE is important

so…

Make the teams as small as necessary.

ASSESSMENT:

If you don’t have

a personal relationship

with every member of your TEAM,

your team is probably TOO BIG.

GUIDANCE:

Aim for TEAM SIZE

of “Dunbar level 1” (5),

possibly “Dunbar level 2” (15).

So… what about other Conway Laws?

Doing it Over

“There is never enough time

to do something right,

but there is always enough

time to do it over.”

-- Mel Conway, 1967

Increasing Intractability

1. Systems grow too large

2. Rate of change increases

3. Overall expectations keep rising

-- Eric Hollnagel, 2009

Conway’s Second Law

tells us PROBLEM SIZE is important

so…

Make the solution as small as necessary.

ASSESSMENT:

If you (or your team)

cannot explain ALL the code

in your release package,

your release is TOO LARGE

GUIDANCE:

Execute many SMALL releases

instead of a few LARGE releases.

Homomorphism

“There is a homomorphism

from the linear graph of a

system to the linear graph of

its design organization”

-- Mel Conway, 1967

Homomorphism

“If you have four groups

working on a compiler, you'll

get a 4-pass compiler.”

- Eric S. Raymond, 1991

Conway’s Third Law

tells us CROSS-TEAM INDEPENDENCE

is important.

So…

Make each team fully independent.

If you have to hold a release

until some other team is ready,

you are not an

INDEPENDENT TEAM

Disintegration

“The structures of large

systems tend to disintegrate

during development,

qualitatively more so than with

small systems.”

-- Mel Conway, 1967

Three reasons Disintegration occurs…

Disintegration: Reason #1

“The realization that the

system will be large, together

with organization pressures,

make irresistible the

temptation to assign too many

people to a design effort”

-- Mel Conway, 1967

Brooks’ Law

Adding manpower to a late

software project makes it later.

-- Fred Brooks, 1975

Disintegration: Reason #2

“Application of the

conventional wisdom of

management to a large

design organization causes its

communication structure to

disintegrate.”

-- Mel Conway, 1967

Dunbar’s Number

A measurement of the “cognitive

limit to the number of individuals

with whom any one person can

maintain stable relationships.”

-- Robin Dunbar, 1992

Disintegration: Reason #3

“Homomorphism insures that

the structure of the system will

reflect the disintegration which

has occurred in the design

organization.”

-- Mel Conway, 1967

Communication dictates design.

-- Mel Conway, 1967

Conway’s Fourth Law

tells us TIME is against LARGE teams.

So…

Make release cycles short and small.

ASSESSMENT:

If your release dates are often missed,

your SCOPE is TOO BIG.

GUIDANCE:

Aim for a SCOPE that supports

a release cycle

of two weeks or less.

Conway’s First Law

A system’s design is a copy

of the organization’s

communication structure.

Actively manage

communications within the

teams and across teams.

Conway’s Second Law

There is never enough time

to do something right, but

there is always enough time

to do it over.

Remember the process is

continually repeating.

Conway’s Third Law

There is a homomorphism

from the linear graph of a

system to the linear graph of

its design organization.

Organize teams in order to

achieve desired system.

Conway’s Fourth Law

The structures of large

systems tend to disintegrate

during development.

Keep your teams as small

as necessary, but no

smaller.

Conway’s Lessons from 1967

1. Increase communications

2. Support continuous process

3. Organize teams by products

4. Make teams small as necessary

Mike Amundsen

@mamund

Conway’s Four Laws

