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Richardson Maturity Model (via Martin Fowler)

http://martinfowler.com/articles/richardsonMaturityModel.html
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because I noticed that each 'step' 

corresponded to the adoption of a 

specific technology.”
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Focus on the API 
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Internal Models



Data-Centric (WADM.L0)

API is the exposed data model

The “go-to” approach for many enterprise IT

Lots of off-the-shelf and SaaS products available



Data-Centric (WADM.L0)

https://www.npmjs.com/package/resquel



Data-Centric (WADM.L0)

Virtually NO design, so this is “level zero” on WADM scale

Upside: 

Quick and easy

Downside:

Often exposes business model and/or valuable IP

Tight-coupling to internal model

May depend on unique data-tech (GROUP-BY, etc.)

Providers push cost of change to consumers



“First step in breaking the data-

centric habit, is to stop 

designing systems as a 

collection of data services, and 

instead design for business 

capabilities.”

Irakli Nadareishvili, 2016
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Object-Centric (WADM.L1)

API is the exposed object model

Common for SOA or Canonical Model approach

Classic SOAP-style implementation pattern



Object-Centric (WADM.L1)

http://www.tutorialspoint.com/wsdl/wsdl_example.htm



Object-Centric (WADM.L1)

Some design, so this get’s “level one” on the WADM scale

Upside:

Lots of great tool support

Models can be built quickly, use-case rich, and targeted

Downside:

Changes to internal models can leak out to interface

Often consumer model is not provider model (esp. mobile)

Coordinating consumer/provider models can be “heavy-handed”



“I'm sorry that I long ago coined 

the term objects for this topic 

because it gets many people to 

focus on the lesser idea. The 

big idea is messaging.”

Alan Kay, 1998
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Resource-Centric (WADM.L2)

API is a set of HTTP-style resources

Common for browser and mobile development shops

Lots of Resource-First products available

(Swagger/OAI, RAML, Blueprint, etc.)



Resource-Centric (WADM.L2)

http://apievangelist.com/2014/03/08/hello-world-product-api-with-blueprint-raml-and-swagger/



Resource-Centric (WADM.L2)

External design earns this one “level 2”

Upside:

Focus is on the interface

Often has a consumer-centric focus (when done well)

Downside:

Sometimes just the internal object model (CRUD)

Usually HTTP-centric (WebSockets? Thrift?)

Often still leaks internal objects and requires isomorphic models



“Program to an interface, 

not an implementation.”

Gamma, et al, 1992
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Affordance-Centric (WADM.L3)

API is a expressed as structured messages (e.g. hypermedia formats)

Common for hypermedia-style and reactive-style implementations

Several registered media types 

(HTML, Atom, HAL, Siren, Collection+JSON, Mason, UBER, etc.)



Affordance-Centric (WADM.L3)

https://gist.github.com/mamund/9443276



Affordance-Centric (WADM.L3)

External design independent of all internal models makes this one “level 3”

Upside:

Focus is on the use-cases, actions

Usually doesn’t restrict protocol, format, or workflow

Downside:

Very few tools/practices widely shared

For M2M cases, relies on custom code and/or vocabularies

Focus on actions over data means more reliance on shared dictionaries



“When I say hypertext, I mean the 

simultaneous presentation of 

information and controls such that 

the information becomes the 

affordance through which the user 

(or automaton) obtains choices and 

selects actions.”

Roy T. Fielding, 2008
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So, what does this all mean?
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Data model may have:

Customer Table

Invoice Table

CustomerVisits Table

Object Model may have:

CustomerSummary

(basic info, summary of invoices, & visits)

CustomerSummary.Read, 

.FilterByName, .Update, .Suspend, etc.
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Modeling at different levels…

Resource model may have:

/customersummary/{custid}

with a LINK to /invoices/{custid}

and a LINK to /visits/{custid}

Affordance Model may have:

customerSummary

CustomerRead, 

CustomerFilter, 

CustomerSuspend, 

CustomerSearch,

etc.
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QUESTIONS? COMMENTS?
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