
Web API Design 

Maturity Model
Mike Amundsen

@mamund

API Academy at CA Technologies





Help People Build Great APIs





Web API Design Maturity Model



Richardson Maturity Model (via Martin Fowler)

http://martinfowler.com/articles/richardsonMaturityModel.html



“I did RMM as a maturity model 

because I noticed that each 'step' 

corresponded to the adoption of a 

specific technology.”

Leonard Richardson, NYPL



“I did RMM as a maturity model 

because I noticed that each 'step' 

corresponded to the adoption of a 

specific technology.”

Leonard Richardson, NYPL



Web API Design Maturity Model



“I did WADM as a maturity model 

because I noticed that each 'step' 

corresponded to the adoption of a 

specific model description 

to expose as the API.”

Mike Amundsen, 2016



“I did WADM as a maturity model 

because I noticed that each 'step' 

corresponded to the adoption of a 

specific model description

to expose as the API.”

Mike Amundsen, 2016



Maturity Models

RMM

Focus on the API 

response documents.



Maturity Models

RMM

Focus on the API 

response documents.

WADM

Focus on the API 

description documents.



Web API Design Maturity Model



Web API Design Maturity Model



Web API Design Maturity Model



Web API Design Maturity Model

Internal Models



Web API Design Maturity Model

Internal Models



Web API Design Maturity Model

Internal Models



Web API Design Maturity Model

Internal Models External Models



Internal Models



Data-Centric (WADM.L0)

API is the exposed data model

The “go-to” approach for many enterprise IT

Lots of off-the-shelf and SaaS products available



Data-Centric (WADM.L0)

https://www.npmjs.com/package/resquel



Data-Centric (WADM.L0)

Virtually NO design, so this is “level zero” on WADM scale

Upside: 

Quick and easy

Downside:

Often exposes business model and/or valuable IP

Tight-coupling to internal model

May depend on unique data-tech (GROUP-BY, etc.)

Providers push cost of change to consumers



“First step in breaking the data-

centric habit, is to stop 

designing systems as a 

collection of data services, and 

instead design for business 

capabilities.”

Irakli Nadareishvili, 2016



“First step in breaking the data-

centric habit, is to stop 

designing systems as a 

collection of data services, and 

instead design for business 

capabilities.”

Irakli Nadareishvili, 2016



Object-Centric (WADM.L1)

API is the exposed object model

Common for SOA or Canonical Model approach

Classic SOAP-style implementation pattern



Object-Centric (WADM.L1)

http://www.tutorialspoint.com/wsdl/wsdl_example.htm



Object-Centric (WADM.L1)

Some design, so this get’s “level one” on the WADM scale

Upside:

Lots of great tool support

Models can be built quickly, use-case rich, and targeted

Downside:

Changes to internal models can leak out to interface

Often consumer model is not provider model (esp. mobile)

Coordinating consumer/provider models can be “heavy-handed”



“I'm sorry that I long ago coined 

the term objects for this topic 

because it gets many people to 

focus on the lesser idea. The 

big idea is messaging.”

Alan Kay, 1998



“I'm sorry that I long ago coined 

the term objects for this topic 

because it gets many people to 

focus on the lesser idea. The 

big idea is messaging.”

Alan Kay, 1998



External Models



Resource-Centric (WADM.L2)

API is a set of HTTP-style resources

Common for browser and mobile development shops

Lots of Resource-First products available

(Swagger/OAI, RAML, Blueprint, etc.)



Resource-Centric (WADM.L2)

http://apievangelist.com/2014/03/08/hello-world-product-api-with-blueprint-raml-and-swagger/



Resource-Centric (WADM.L2)

External design earns this one “level 2”

Upside:

Focus is on the interface

Often has a consumer-centric focus (when done well)

Downside:

Sometimes just the internal object model (CRUD)

Usually HTTP-centric (WebSockets? Thrift?)

Often still leaks internal objects and requires isomorphic models



“Program to an interface, 

not an implementation.”

Gamma, et al, 1992



“Program to an interface, 

not an implementation.”

Gamma, et al, 1992



Affordance-Centric (WADM.L3)

API is a expressed as structured messages (e.g. hypermedia formats)

Common for hypermedia-style and reactive-style implementations

Several registered media types 

(HTML, Atom, HAL, Siren, Collection+JSON, Mason, UBER, etc.)



Affordance-Centric (WADM.L3)

https://gist.github.com/mamund/9443276



Affordance-Centric (WADM.L3)

External design independent of all internal models makes this one “level 3”

Upside:

Focus is on the use-cases, actions

Usually doesn’t restrict protocol, format, or workflow

Downside:

Very few tools/practices widely shared

For M2M cases, relies on custom code and/or vocabularies

Focus on actions over data means more reliance on shared dictionaries



“When I say hypertext, I mean the 

simultaneous presentation of 

information and controls such that 

the information becomes the 

affordance through which the user 

(or automaton) obtains choices and 

selects actions.”

Roy T. Fielding, 2008



“When I say hypertext, I mean the 

simultaneous presentation of 

information and controls such that 

the information becomes the 

affordance through which the user 

(or automaton) obtains choices and 

selects actions.”

Roy T. Fielding, 2008



So, what does this all mean?



Modeling at different levels…

Data model may have:

Customer Table

Invoice Table

CustomerVisits Table



Modeling at different levels…

Data model may have:

Customer Table

Invoice Table

CustomerVisits Table

Object Model may have:

CustomerSummary

(basic info, summary of invoices, & visits)

CustomerSummary.Read, 

.FilterByName, .Update, .Suspend, etc.



Modeling at different levels…

Resource model may have:

/customersummary/{custid}

with a LINK to /invoices/{custid}

and a LINK to /visits/{custid}



Modeling at different levels…

Resource model may have:

/customersummary/{custid}

with a LINK to /invoices/{custid}

and a LINK to /visits/{custid}

Affordance Model may have:

customerSummary

CustomerRead, 

CustomerFilter, 

CustomerSuspend, 

CustomerSearch,

etc.



Web API Design Maturity Model

http://martinfowler.com/articles/richardsonMaturityModel.html



“Your data model is not your object 

model is not your resource model is 

not your affordance model.”

Mike Amundsen, 2016



“Your data model is not your object 

model is not your resource model is 

not your affordance model.”

Mike Amundsen, 2016



“Your data model is not your object

model is not your resource model is 

not your affordance model.”

Mike Amundsen, 2016



“Your data model is not your object

model is not your resource model is 

not your affordance model.”

Mike Amundsen, 2016



“Your data model is not your object

model is not your resource model is 

not your affordance model.”

Mike Amundsen, 2016



QUESTIONS? COMMENTS?



Web API Design 

Maturity Model
Mike Amundsen

@mamund

API Academy at CA Technologies


