
© 2017 CA. Confidential. All rights reserved.

From APIs to Microservices:
Design and Build

July 2017

Mike Amundsen, API Academy, CA Technologies @mamund

© 2017 CA. Confidential. All rights reserved.

API Academy

http://g.mamund.com/msabook

© 2017 CA. Confidential. All rights reserved.

Overview
● The Business of APIs
● Microservices

● The Value of Design

● An API Design Methodology

● Three-Steps to API Implementation

© 2017 CA. Confidential. All rights reserved.

The Business of APIs

9

API
abbreviation
1. application programming interface

{
 “city”: “London”,
 “temp”: 22
}

GET /weather

APIs allow us to unlock hidden business value

▪Create New Applications
▪Identify New Revenue Streams
▪Initiate New Businesses

temperature data (by location)

layout, graphics and text

user input

Build page and send

Typical Mobile App

layout, graphics and text

temperature data (by location)user input

Web API

Powered by APIs

layout, graphics and text

temperature data (by location)

user input

Web API

APIs enable Multi-channel Delivery

© 2017 CA. Confidential. All rights reserved.

Microservices

9

16 © 2015 CA. ALL RIGHTS RESERVED.

17 © 2015 CA. ALL RIGHTS RESERVED.

18 © 2015 CA. ALL RIGHTS RESERVED.

19 © 2015 CA. ALL RIGHTS RESERVED.

20 © 2015 CA. ALL RIGHTS RESERVED.

21 © 2015 CA. ALL RIGHTS RESERVED.

22 © 2015 CA. ALL RIGHTS RESERVED.

23 © 2015 CA. ALL RIGHTS RESERVED.

24 © 2015 CA. ALL RIGHTS RESERVED.

25 © 2015 CA. ALL RIGHTS RESERVED.

Balancing Speed and Safety at Scale

26 © 2015 CA. ALL RIGHTS RESERVED.

The Microservice Way

A microservice is an independently deployable component of

bounded scope that supports interoperability through

message-based communication.

27 © 2015 CA. ALL RIGHTS RESERVED.

The Microservice Way

A microservice is an independently deployable component of

bounded scope that supports interoperability through

message-based communication.

Microservice architecture is a style of engineering highly

automated, evolvable software systems made up of

capability-aligned microservices.

28 © 2015 CA. ALL RIGHTS RESERVED.

The Microservice Way

▪ Microservices are ideal for big systems

▪ Microservice architecture is goal-oriented

▪ Microservices focus on replaceability

29 © 2015 CA. ALL RIGHTS RESERVED.

© 2017 CA. Confidential. All rights reserved.

The Value of Design

7

Few people think about it or are
aware of it. But there is nothing
made by human beings that does not
involve a design decision
somewhere.

“
”

Bill Moggridge
Interaction Design Pioneer

http://www.flickr.com/photos/monicamuller/3171329060

toast

Functionality

http://www.flickr.com/photos/traviswiens/3761198872/

Usability

Experience

© 2017 CA. Confidential. All rights reserved.

An API Design Methodology

20

An API Design Methodology

A repeatable process to govern the creation of interfaces

▪Produce a Service Canvas
▪Draw a Diagram
▪Apply Vocabularies
▪Create Description Document

Produce a Service Canvas

Design Canvas: Customer-centric
Payments Management Service

Consumer Tasks Dependencies

Qualities
• Audited

• Low volume
• Non-critical

• Delegated authorization
• Backward compatibility for

interface versions

Interface

Data
• Customer signup status for

customer-centric payments
• Customer preferences for

customer-centric payments

Logic/Rules
• Minimum accounts/products

required for signup
• Role-based permissions

Queries
• Query customer

payments status
and preferences

Commands
• Opt in

• Opt out
• Update preferences

Event Subscriptions Event PublicationsBanking Customer using
Online Banking Web App
• Sign up for payments

service
• Opt out of payments

service

Customer Information
Service

• Obtain list of customer
accounts and products

Branch CSR using Branch
Banking Desktop App
• Sign customer up for

payments service

Marketing Web App
• Identify customers for

payments promotion

40

Consumer Tasks

List all the Actions

Dependencies

Qualities
• Audited

• Low volume
• Non-critical

• Delegated authorization
• Backward compatibility for

interface versions

Interface

Data
• Customer signup status for

customer-centric payments
• Customer preferences for

customer-centric payments

Logic/Rules
• Minimum accounts/products

required for signup
• Role-based permissions

Queries
• Query customer

payments status
and preferences

Commands
• Opt in

• Opt out
• Update preferences

Event Subscriptions Event PublicationsBanking Customer using
Online Banking Web App
• Sign up for payments

service
• Opt out of payments

service

Customer Information
Service

• Obtain list of customer
accounts and products

Branch CSR using Branch
Banking Desktop App
• Sign customer up for

payments service

Marketing Web App
• Identify customers for

payments promotion

41

We only need to focus on the INTERFACE

Draw a Diagram

Home

List Preferences Get Opt-in Status

Update Opt-InUpdate Preferences

CustIDCustID

CustID, StatusCustID, Pref[name,value]

Apply Vocabularies

Sources for Vocabularies

▪IANA Link Relation Values
▪schema.org
▪microformats
▪Dublin Core
▪Activity Streams
▪Industry Vocabularies (BIAN, etc.)
▪Your Enterprise Vocabularies

Before Applying Vocabularies
▪CustID,
▪CustomerName,
▪AccountName,
▪AccountType
▪Optin-Status(in, out)
▪Preference(Name, Value, Prompt)
▪GetStatus
▪GetPreferences
▪UpdateStatus
▪UpdatePreferences

After Applying Vocabularies
▪BankAccount.identifier,
▪Customer.familyName,
▪Customer.givenName,
▪BankAccount.name,
▪BankAccount.category
▪ActionStatus("in", "out")
▪ItemList(identifier, value, name)
▪GetStatus
▪GetPreferences
▪UpdateStatus
▪UpdatePreferences

Create a Description Document

Description vs. Definitions

▪ Describing the interface doesn't define it.
▪ Description languages

▪ ALPS
▪ DCAP
▪ JSON Home

Description vs. Definitions

▪ Describing the interface doesn't define it.
▪ Description languages

▪ ALPS
▪ DCAP
▪ JSON Home

▪ Definition languages
▪ WSDL
▪ Swagger
▪ RAML
▪ Blueprint

Description vs. Definitions

▪ Describing the interface doesn't define it.
▪ Description languages

▪ ALPS
▪ DCAP
▪ JSON Home

▪ Definition languages
▪ WSDL
▪ Swagger
▪ RAML
▪ Blueprint

Design Artifacts

▪Service Canvas
▪Diagram
▪Description Document

Check these into source control

© 2017 CA. Confidential. All rights reserved.

Three Steps to API Implementation

Implementing APIs

▪ APIs are Interfaces, Not Functionality
▪ Implementing APIs means translating the Design
▪ Three-phase API Implementation

▪ Sketching
▪ Prototyping
▪ Building

APIs are Interfaces

▪You're not designing the functionality of a service
▪You MAY already have that functionality somewhere
▪You MAY need to create the functionality
▪Focus on the "API-First"

You MAY already have the functionality

▪Your job is to act as a "proxy" between the interface design
and the existing functionality

▪Identify the existing functionality (e.g. the MSC or portion of
a monolith

You MAY need to create the functionality

▪Your job is to act as a "guide" for the new functionality
▪Offer a "shell" for future functionality
▪Be prepared to do conversions

API First, API Forever

▪Assume the API will not change, but the implementation
details will

▪Once released to production, it is easier to modify
functionality than interfaces

Translating the Design

▪ Translations are always approximate
▪ In many cases we "lose something in the translation…"
▪ API styles affect translation

▪ SOAP
▪ CRUD
▪ Hypermedia
▪ Reactive

▪ Don't worry if the translation is not exact.

Three-Phase API Implementation

Three-Phase API Implementation

▪To reduce cost and risk, take a three-phase approach
▪Sketching - disposable experiments
▪Prototyping - testable examples
▪Building - production implementation

Reduce Cost and Risk in API Implementation

▪Implementation can be costly
▪Mistakes may be uncovered along the way
▪Uncover mistakes early when they are inexpensive to fix
▪Put off writing code for as long as possible.

Frank Gehry

Frank Gehry

Frank Gehry on Design...

Sketching APIs

▪Sketches are terse, rough drawings
▪They give the general idea of a thing

but lack important details.
▪Usually, one can glean the basics from a sketch but
▪Sketches usually are just explorations of ideas,

not fully-formed items.

Apiary Blueprint

Sketching APIs

▪ Use tools like Apiary Editor to create a sketch.
▪ Show it to others (devs, stakeholders) and

get their feedback.
▪ If possible use simple API consumer tools

(curl, NodeJS, etc.) to test.
▪ Continue to modify the simple sketches as needed

Sketches are made to be thrown away.

Prototyping APIs

▪Prototypes look like the real thing, but are not.
They’re "fakes."

▪They let you work up something with all the details
of a real API, but without the actual functionality
behind it.

▪They’re an inexpensive way to work out the details
▪Use them to discover challenges before you go

into production.

Swagger Editor

Prototyping APIs

▪Use tools like Live API Creator, NodeJS express,
or other code-generating platforms.

▪It’s also a good idea to use service-virtualization
frameworks to mock up the response data.
▪If possible, include access-control checking when

running tests against the prototype.
▪If possible use existing production-level API

consumers to test out the prototype.

Prototypes are made to be tested.

By Patrick Creighton - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49014485

Building APIs

▪ API builds are the real thing
▪ Production-ready, access-controlled, resilient, scalable.
▪ Building the production implementation means

▪ Working out all the kinks
▪ Supporting all the use-cases identified during the sketch and prototype

phases.

Building APIs
var express = require('express'),
app = express();
var port = 8080;
app.listen(port);

app.get("/tasks", function(req, res) {
res.status(200).send(‘<response>

<tasks>
<task>
<name>Pick up Kai</name>
<priority>1</priority>

</tasks>
</response>’);

}

Building APIs
GET
/tasks

Building APIs

▪ Each implementation has their own challenges to
overcome.

▪ Each deserves their own guidance and style-guides.
▪ Gateway Policies
▪ ESB Rules
▪ Scripting (NodeJS)
▪ Code (Java/C#)

▪ All require exhaustive testing at the unit,
acceptance, and integration levels.

▪ All require detailed access control.

Production APIs are made last.

© 2017 CA. Confidential. All rights reserved.

So...

© 2017 CA. Confidential. All rights reserved.

Summary

● API enable Multi-channel Delivery

● Functionality, Usability, Experience

● Canvas, Diagram, Description

● Sketch, Prototype, Build

© 2017 CA. Confidential. All rights reserved.

From APIs to Microservices:
Design and Build

July 2017

Mike Amundsen, API Academy, CA Technologies @mamund

