EodeMash Blo icke CodeMash 101
Learning the Three Types
of Microservices

http://g.mamund.com/at-newsletter-signup

CodeMash 2019

Mike Amundsen
@mamund
APl Academy

training.amundsen.com

Amundsen Training

Technical

Learning with Mike
Amundsen

Transformation

Inspiration

HHHHH

www.apiacademy.co

«)Aplacademy Explore Resources Events Podcast About Subscribe Q

Get updates to your email

AP| STRATEGY

Microservices, APIs and Innovation: The
Power of APIs

Explore the role APIs play in empowering teams and enabling
organizations to innovate.

http://g.mamund.com/msabook

technologies

Microservice Architecture: Aligning Principles, Practices, and Culture

Microservices is the next evolution in software architecture designed to help ‘

organizations embrace continual change in the digital economy. But how do
you design and apply an effective microservice architecture?

This new book from O'Reilly provides comprehensive quidance through seven
valuable chapters that give you a deep-dive into:

: »&h\\ N :
« The benefits and principles of microservices Ml
- CIOSGI’ vice

« A design-based approach to microservice architecture

« Lessons for applying microservices in practice AI ChlteCtUIe

ALIGNING PRINOPLES, PRACTICES, AND CULTURE

http://g.mamund.com/cambook

OREILLY"

"A reusable guide to the technology,
business, and politics of doing APIs
at scale within the enterprise.”

-- Kin Lane, APl Evangelist %ontmuous API

Management

MAKING THE RIGHT DECISIONS IN AN EVOLVING LANDSCAPE

Mehdi Medjaoui, Erik Wilde,
Ronnie Mitra & Mike Amundsen
Foreword by Kin Lane

Overview

Programming the Network

Microservices

Three Types of Microservice Components
Nygard's Stability Patterns

Applying Nygard to Microservices

But Wait, There's More...

Programming the Network

Traveling

Traveling
the Network

]

-
a
E
=
Ed
E
=
=
=

—

‘3
H

8

388!

S,

Programming
the Network

Programming the Network

"There is no simultaneity at a
distance.”

-- Pat Helland (2005)

Pat Helland

"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

Newton rules the "inside"

Sir Isaac Newton

Einstein rules the "outside

Albert Einstein

Programming the Network

There 1s no simultaneity at a distance!

-- Similar to the speed of light bounding information

-- By the time you see a distant object. i1t may have
changed!

-- By the time you see a message. the data may have

changed!

Pat Helland

"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

Programming the Network

There 1s no simultaneity at a distance!
-- Similar to the speed of light bounding information
-- By the time you see a distant object. it may have

changed!
-- By the time you see a message. the data may have

changed!

Services. transactions. and locks bound simultaneity! Pat Helland
-- Inside a transaction. things are simultaneous

-- Simultaneity exists only inside a transaction!
-- Simultaneity exists only inside a service!

"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

Programming the Network

Service Service

Service :
Service

#3 44 Pat Helland

"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

Fallacies of Distributed Computing (1994)

. The network is reliable.
Latency is zero.
Bandwidth is infinite.

. The network is secure.

. Topology doesn't change.

. There Is one administrator.

. Transport cost is zero.

1
2.
3.
4
9
6
7
g L Peter Deutsch

. The network is homogeneous.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

The Language of the System (2012)

The Stacks

9.... 2012 Program System
Application libs Application as services
Runtime and core libs Simple Services

Language primitives | Protocols and formats

& O Rich Hickey

LJd

The Language of the System, Rich Hickey (2012) https://www.youtube.com/watch?v=ROor6_NGIWU

Programming the Network brings
new challenges

Microservices

"An approach to developing a
single application as a suite of
small services, each running in
its own process and
communicating with lightweight
mechanisms."”

-- Martin Fowler, 2014

https://www.thoughtworks.com/insights/blog/microservices-nutshell

"Emphasizes scalability of
component interactions,
generality of interfaces,
iIndependent deployment of
components, and intermediary
components.”

-- Roy Fielding, 2000

"A universal linked information
system, in which generality and
portability are [most] important.”

-- Iim Berners-Lee, 1989

Microservice Characteristics

e Make each program do one thing well

e EXxpect the output of every program to be the input of
another program

e Design and build software to be tried early

e Use tools to lighten the programming task

Unix Operating Principles (1978)

e Make each program do one thing well

e EXxpect the output of every program to be the input of
another program

e Design and build software to be tried early

e Use tools to lighten the programming task

https://en.wikipedia.org/wiki/Unix_philosophy

Loosely-coupled components
running in an
engineered system.

Three Types of Microservices

Three Types of Microservices

e Stateless
e Persistence
e Aggregator

Stateless Microservices

Stateless Microservices

e Simple processors (converters, translators, etc.)
e No dependence on other microservices
e No local data storage (disk |/O)

The most common MSC example, but the least useful!

Stateless Microservices

e No shared state
e [Easy toreplace
e Easy to scale up

Ephemeral Computing

Stateless Microservices

function conversionServer(request, response) {
response = convertValue(request);
return response;

}

Persistence Microservices

Persistence Microservices

e Simple (local) storage (reads and/or writes)
e Disk I/O dependent
e Possibly VM or one-U dependent

Commonly needed MSC, not the easiest to implement.

Persistence Microservices

e System of Record/Source of Truth
e Relatively easy to scale for reads (CQRS)
e No cross-service two-phase commits (Saga)

Durable Storage

Persistence Microservices

function updateOrders(request, response) {
response = localStorage.write(request);
return response;

}

Aggregator Microservices

Aggregator Microservices

e Depends on other ("distant") microservices
e Network dependent
e Usually Disk I/O dependence, too

The most often-needed; most challenging, too.

Aggregator Microservices

e Sequence vs. Parallel calls
e Timing is everything
e Easy to scale (should be...)

Workflow Choreography

Aggregator Microservices

function writeOrders(request, response) {
var resourcelList = ["customerDB", "orderDB", "salesDB"]'
var servicelList = gatherResources(resourcelList);
response = servicelList(request)

return response;

}

Three Types of Microservices

e Stateless (ephemeral)
e Persistence (durable)
e Aggregator (workflow)

But, what about the network?

Nygard's Stability Patterns

“Bugs will happen. They
cannot be eliminated, so they
must be survived instead.”

-- Michael T. Nygard

Release It!

Second Edition

D aund Deplen

Prodhaction - Heady Sollwa

Nygard Stability Patterns

Timeout
Circuit Breaker
Bulkhead
Steady State
Fail Fast
Handshaking

"Nygard Stability Patterns” -- Timeout

"The timeout is a simple mechanism allowing you to stop
waiting for an answer once you think it will not come."
-- Chapter 5.1

"Nygard Stability Patterns” -- Timeout

"The timeout is a simple mechanism allowing you to stop

waiting for an answer once you think it will not come."
-- Ch 5.1

process.on('SIGTERM','function () {
discovery.unregister(, function(response) {
try {
uuidGenerator.close(function() {
console.log('gracefully shutting down');
process.exit(");
});
} catch(e){}
3
setTimeout (function() {
console.error('forcefully shutting down');

Release It!
Second Edition

process.exit(!);
T)
F);

"Nygard Stability Patterns" -- Circuit Breaker

"Circuit breakers are a way to automatically degrade
functionality when the system is under stress.”
-- Chapter 5.2

"Nygard Stability Patterns" -- Circuit Breaker

"Circuit breakers are a way to automatically degrade
functionality when the system is under stress."
-- Chapter 5.2

Closed ~ Open
on call / pass through " on call / fail

call succeeds / reset count D Dreaxeq! on timeout / attempt reset
call fails / count failure
threshold reached / trip breaker

Release It!
Second Edition

Half-Open
on call/pass through
. | call succeeds/reset
N\ call fails/trip breaker

"Nygard Stability Patterns” -- Bulkhead

"The bulkhead enforces a principle of damage containment.”
-- Chapter 5.3

"Nygard Stability Patterns” -- Bulkhead

"The bulkhead enforces a principle of damage containment.”

-- Chapter 5.3

"Nygard Stability Patterns” -- Bulkhead

"The bulkhead enforces a principle of damage containment.”
-- Chapter 5.3

"Nygard Stability Patterns” -- Steady State

"The system should be able to run indefinitely without human

intervention.”
e Avoid fiddling -- Chapter 5.4
e Purge data w/ app logic
e Limit caching
e Roll the logs

"Nygard Stability Patterns” -- Steady State

"The system should be able to run indefinitely without human

intervention.”
e Avoid fiddling -- Chapter 5.4
e Purge data w/ app logic
e Limit caching
e Roll the logs

"Nygard Stability Patterns” -- Fail Fast

"If the system can determine in advance that it will fail at an
operation, it’s always better to fail fast.”
-- Chapter 5.5

"Nygard Stability Patterns” -- Fail Fast

"If the system can determine in advance that it will fail at an
operation, it’s always better to fail fast.”

function bookOrders(orderLlst timeBudget) { = Chapter 5.5

var status =
var resources = [" customerdata "orderdata","salesdata"];
setTimeout (function(resources) {
var status = confirmResourceAvailability(resources);
if(status=== && timeBudget>500) {
try {
status = writeOrders(orderList, resources);

}
catch (ex) {
error("failed to write orders : {errordcode}",ex);

} Release It!
} Second Edition
else { s e
error("failed to acquire resources : FAILFAST");

}
}, timeBudget);

}

"Nygard Stability Patterns” -- Handshaking

"Handshaking is all about letting the server protect itself by
throttling its own workload."
-- Chapter 5.6

"Nygard Stability Patterns” -- Handshaking

"Handshaking is all about letting the server protect itself by
throttling its own workload."

}

function sendOrders(orderList, timeBudget) {
if(

(health.responseMS+health.latencyMS) < timeBudget
) {

bookOrders.send(orderList, timeBudget) ;
}

else {
error("failed to send orders: HEALTHCHECK");

}

-- Chapter 5.6

Release It!
Second Edition

"Nygard Stability Patterns” -- Cache

"Caching can reduce the load on the server and cut response
times to a fraction of what they would be without caching.”
-- Chapter 10.2

"Nygard Stability Patterns” -- Cache

"Caching can reduce the load on the server and cut response
times to a fraction of what they would be without caching.”

-- Chapter 10.2

function sendResults(response) {
response.writeHead(status,
{ 'Content-Type' : 'text/plain’,
'Cache-Control': 'public,max-age=108000"}
) .

résponse.end(value+'\n');
}

Release It!
Second Edition

"Nygard Stability Patterns” -- Cache

"Caching can reduce the load on the server and cut response
times to a fraction of what they would be without caching.”

-- Chapter 10.2

function sendResults(response) {
response.writeHead(status,

{ 'Content-Type' : 'text/plain’,
'Cache-Control': 'public,max-ag -
- function getData(URL) {
response.end(value+'\n'); data = -
} data = cache.read(URL);
if(!data) { T
data = requestResults(URL); Do
cache.write(URL,data); e
}

: return data; Q,

Stabilizing Stateless Microservices

Stateless Microservices

function conversionServer(request, response) {
response = convertValue(request);
return response;

}

Networked Stateless

e What if the work takes too long?

Stable Stateless Microservices

function conversionServer(request, response) {
if(request.timeBudget > my.averageResponse) {
response = FailFastError(request);
}
else {
response

}

return response;

}

convertValue(request);

1.

Fail-Fast

Stabilizing Persistence Microservices

Persistence Microservices

function updateOrders(request, response) {
response = localStorage.write(request);
return response;

}

Networked Persistence

What if the work takes too long?

What is the dependent service doesn't respond in time?
What if the dependent service is down?

What if the storage overflows (data, logs, etc.)?

Stable Persistence Microservices

function updateOrders(request, response) { 1. Fail-Fast
if(request.timeBudget < localStorage.latency) {
response = FailFastError(request); ;2 'T1rT1EBC)LJt
} [
else { - .
response = setTimeOut(circuitBreaker (3 CerUlt Breaker
localStorage.write(request),
{timeout: ©,maxFail:,reset: 0} 4. EStEBEi(i)/ State
), timeBudget);
}
return response;
}

Stabilizing Aggregator Microservices

Aggregator Microservices

function writeOrders(request, response) {
var resourcelList = ["customerDB", "orderDB", "salesDB"]'
var servicelList = gatherResources(resourcelList);
response = servicelList(request)

return response;

}

Networked Aggregators

What if the work takes too long?

What if a dependent services doesn't respond in time?
What if a dependent service is down?

What if storage overflows (data, logs, etc.)?

What if a dependent service is unhealthy?

What if traffic for a service spikes?

Stable Aggregator Microservices

function writeOrders(request, response) {
var resourceList = ["customerDB", "orderDB", "salesDB"]'

setTimeOut (function(request, response, resourcelList) {
var servicelList = gatherResources(resourcelList);
if(servicelList.estimatedCost > request.timeBudget) {
response = FailFast(request);

}
else {
if(servicelList.healthy ===) {
circuitBreaker(servicelList, request,
{timeout: ' ©,maxFail: *,reset: 0});
}
}

},request.timeBudget) ;

return response;

}

S O & WD

Fail-Fast
Timeout
Circuit Breaker
Steady State
Handshaking
Bulkhead

Nygard's Admonition...

Is All This Clutter Really Necessary?

You may think, as I did when porting the sockets library, that handling all the possible timeouts
creates undue complexity in your code. It certainly adds complexity. You may find that half your
code is devoted to error handling instead of providing features. I argue, however, that the essence
of aiming for production—instead of aiming for QA—is handling the slings and arrows of
outrageous fortune. That error-handling code, if done well, adds resilience. Your users may not
thank you for it, because nobody notices when a system doesn’t go down, but you will sleep better

at night.

Applying Nygard's Patterns to Services

e Stateless
o fail fast

e Persistence
o fail fast, timeout, circuit breaker, steady state

e Aggregation

o fail fast, timeout, circuit breaker, steady state, handshaking, bulkhead

Apply Nygard's Stability Patterns
to improve the health
of your components and your system.

Aim for Interop, not Integration...

"Interoperation is peer to peer. Integration is
where a system is subsumed within

another.”

-- Michael Platt, Microsoft

https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/

Aim for Interop, not Integration...

on © - © Application
= o= m m < = g S S A

Communication

By WKkinterop - Powerpoint -> PNG, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=35139609

Include time/distance in your models

"There is no simultaneity at a distance."

-- Pat Helland, Salesforce

Pat Helland

https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/

Include time/distance in your models

"I'm sorry that coined the term ‘objects’ for this

rn

topic. The big idea is ‘'messaging’.

Alan Kay, 1998

Remember, you're programming the network

. The network is reliable.
Latency is zero.
Bandwidth is infinite.

. The network is secure.

. Topology doesn't change.

. There Is one administrator.

. Transport cost is zero.

1
2.
3.
4
9
6
7
g L Peter Deutsch

. The network is homogeneous.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Remember, you're programming the network

e Safety

https://www.w3.0rg/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf

Remember, you're programming the network

e Safety The HTTP protocol supports
a number of "safe" actions such
as HEAD, and GET.

The HTTP methods PUT, POST,

and DELETE are categorized as
"unsafe” actions.

https://www.w3.0rg/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf

Remember, you're programming the network

e Safety
e Idempotence

https://www.w3.0rg/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf

Remember, you're programming the network

e Safety In HTML when a FORM element

1d ¢ has the METHOD property set to
¢ ilaempotience "get” this represents an

idempotent action.
When the same property is set to

"post” the affordance represents a
non-idempotent action.

https://www.w3.0rg/2011/10/integration-workshop/p/hypermedia-oriented-design.pdf

Other Considerations...

e |Interop vs. Integration
e Time & Distance
e Safety & ldempotence

So...

We need microservices...

So that we can program the network...

Which means applying patterns to our interactions..,

function writeOrders(request, response) {
var resourceList = ["customerDB", "orderDB", "salesDB"]'

setTimeOut (function(request, response, resourcelList) {
var servicelList = gatherResources(resourcelList);
if(servicelList.estimatedCost > request.timeBudget) {
response = FailFast(request);

}
else {
if(servicelList.healthy ===) {
circuitBreaker(servicelList, request,
{timeout: ' ©,maxFail: *,reset: 0});
}
}

},request.timeBudget) ;

return response;

S O & WD

Fail-Fast
Timeout
Circuit Breaker
Steady State
Handshaking
Bulkhead

And that means understanding the role of semantics...

Communication

And the role of distance & time...

Service
#1 #

Service
#3

And constantly reminding ourselves of the challenge.

’ The Stacks

2012 Program | System ‘
. J

C Application libs Application as services ‘
Runtime and core libs ‘ Simple Services
|

= ‘ Language primitives | Protocols and formats |

Pl o) 26:16/1:02:49 - plmf e

That's a lot!

The Best Software Architecture

"The best software architecture 'knows' what
changes often and makes that easy."
- Paul Clements

Thank you.

http://g.mamund.com/at-newsletter-signup

Amundsen Training

Subscribe

Free Amundsen Talks Newsletter

Stay Up-to-Date

Keep up with the latest Microservice and APl news with the Amundsen Talks (AT) Newsletter.
Where is Mike Amundsen this month? What's the latest news from the field? Stay up-to-date with
the AT.

Original Content

Every month, you'll get a collection of links to recent articles, updates on Mike's travels to

conferences and shows around the world, and at least one original article or paper.
Newsletter Sign-Up Page

Bonus Issue

Don't miss an issue. Sign up now and get a special "Welcome to the AT" bonus issue right away.

Home v

Q

CodeMash Blog ckets CodeMash 101
Learning the Three Types
of Microservices

Please fill out the session survey in the CodeMash app!

CodeMash 2019

Mike Amundsen
@mamund
APl Academy

